

Algorithm
Description
Algorithm

Description
Names of algorithm developers:

Dianelos Georges Georgoudis

Damian Leroux
Billy Simón Chaves

Names of algorithm developers:

Dianelos Georges Georgoudis
Damian Leroux

Billy Simón Chaves

FROG encrypts a data block by interpreting
 a sequence of primitive invertible instructions

coded into the internal key.
To decrypt a block, this process is simply

run in reverse, thus effectively
un-doing the encryption.

Formatting the Internal Key

FROG
Analysis
FROG

Analysis

Important Characteristics of the Cipher

1. FROG has an extremely simple structure and
represents an instance of a novel design principle.

2. FROG uses only byte level XORs and byte level
substitutions.

3. FROG’s can encrypt blocks of any size between 8 and
128 bytes.

4. FROG’s user key can have any size between 5 and 125
bytes.

5. FROG’s key expansion can be modified by the user
without affecting its strength.

6. FROG has only one constant table whose values are
not critical for its strength.

7. No weak keys are known for FROG.

8. Once the internal key is setup, the encryption and
decryption processes of FROG are extremely simple
(22 machine instructions of 8086 assembler).

FROG’s strength

FROG is a new type of cipher, designed to resist both
known and unknown attacks.

Known attacks such as differential and linear
cryptanalysis attacks are not expected to work because
FROG uses S-boxes initialized with effectively random
values which are unknown to the cryptanalyst.

FROG resists unknown attacks because:

1. It has a simple structure that decreases the probability
of a flaw.

2. FROG has not been designed specifically to resist
known attacks. If it manages to resist the intensive
cryptanalysis that the AES candidates will go through,
confidence will be gained about its strength against all
attacks.

3. It resists mathematical modeling.

4. It has a very complex internal key setup.

 8 bit optimized 8086 multi-
 processors C assembly encryption
Machine instructions
 per byte ~ 100 ~ 100 60 150 ?

 bytes per second 2.1 K ? 1.3-1.7 M 2.2 M 10 M ?

 CPU cycles per byte 1100 ? 120-160 90 20 ?

Pentium 200 MHz

FROG’s speed

FROG’s very complex key setup process needs 10
mseg on a Pentium 200.

Smart card applications will pre-compute and store
the internal key.

FROG’s encryption or decryption speed per byte
does not depend either on the user key size or on the
size of the data block.

FROG’s memory requirements

FROG memory requirement for encryption or
decryption is exactly the size of its internal key:

• • 2,304 bytes for 16 byte blocks (NIST standard)

• • 4,096 bytes for 128 byte blocks (largest

block tested)

The key setup process is recursive and requires
approximately twice as much memory.

FROG
Methodology

FROG
Methodology

FROG’s Design Principles

1. Hide as much information about the actual
computational process of encryption as possible.

2. Implement an algorithm that is very simple so that
no trap-doors can be hidden in it and so that the
probability of obscure structural flaws is
minimized. (Minimize human bias in the design of
the algorithm.)

3. Devise an algorithm that resists mathematical
modeling.

The goal of these design principles is to strengthen
FROG against all possible attacks, not just known
ones.

Generalization of FROG

A more general version of FROG can be created
that divulges even less structural information.

1. FROG processes each byte in the data block
sequentially. This can be variable and change in
each round.

2. FROG uses one S-table per round. Make this
variable per byte and per round.

3. FROG uses 8 S-tables and 8 rounds. Allow for a
variable number of tables and a variable number
of rounds.

4. FROG’s implements key dependent destinations.
Allow for data dependent destinations too.

These points can be easily coded in the current
version of FROG without much effect on its speed.

Towards a Perfect Vacuum

Even more information can be hidden:

1. FROG uses only XOR arithmetic operations. Allow for
a bigger set that includes ADDs, data dependent
circular shifts, etc. Allow the user to define the subset
desired.

2. FROG processes each byte executing four specific
instructions in a fixed order. Allow for a variable
number, type and order of instructions. Allow for
different “micro-ciphers” for different cycles.

These points can be implemented efficiently by using a
“user-key compiler” that inputs a key and produces
executable code and tables.

Generalized FROG works as a cipher generator and is
very malleable. For example, if memory is a limited
quantity, fewer S-boxes can be used. At the extreme
FROG could produce a key-dependent cipher that
requires no memory at all.

dianelos@tecapro.comdianelos@tecapro.com

